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Abstract 

We present several results on the leader-following (LF) paradigm in the formation flying 
of multiple  spacecraft in free space. In this direction, ideas from elementary graph theory 
and linear matrix inequalities are combined with logic-based switching to shed light on the 
various control designs which are feasible  using the leader-following mechanism for various 
formation scenarios. 
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1 Introduction 
Formation flying (FF) has been identified as an enabling technology for many of the NASA's 
2lSt  century missions, among them,  the Deep  Space 3 and the  Terrestrial  Planet Finder. 
Formation flying  involves  flying a group of spacecraft in a particular pattern while maintaining 
precise (but often time varying) relative position, velocity, attitude, and angular velocity, with 
respect to each other [7], [1-4]. Since traditional spacecraft control is often concerned with 
measuring and maintaining  the above quantities for a single spacecraft with respect to  an 
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inertial reference frame,  the analogous FF control and estimation problems are  often an order' 
of magnitude more  challenging than those encountered traditionally for a single spacecraft [2], 
[9], [16]. In order to make the FF control problems at  least similar to the single spacecraft 
case, an approach based on leader-following has been  proposed by Wang and Hadaegh [15]. 
The basic idea in  leader-following (LF) is to designate a particular frame  (or  multiple frames) 
in the  formation as the reference frame(s) and measure and control the  states of the  rest'of 
the formation with respect to them. 

The purpose of the present paper is twofold. First it is  shown that LF can  naturally be 
I .. given a graph theoretic formulation, and by doing so, we are able to obtain non-trivial results 

on some of its basic properties. We then derive simple control laws for LF using linear matrix 
inequalities (LMIs) (41. These control laws are subsequently employed in the second part of 
the paper to propom logic-based switching schemes for the formation control. 

The outline of the paper is as follows. In 92 the notation and the relevant mathematical pre- 
liminaries are presented, among them, certain facts on elementary graph theory, LMIs, hybrid 
and switching systems. $3 is devoted to leader-following and its graph theoretic  interpretation. 
Simple control laws are then derived in $4. In 95, $6, and $7, the control laws derived in 94 
are combined with logic-based switching to propose a hybrid control architecture for leader 
reassignment, LF capturing, and dealing with control saturations. 

2 Notation and  Preliminaries 

In this section we first describe the notation  and  then provide  some elementary  facts  and 
notions on graphs, point mass dynamics, LMIs, and hybrid systems, which shall be used in the 
subsequent sections. 

2.1 Notation 

Formation flying consists of  flying a group of spacecraft in a particular pattern. To be able 
to express the  time evolution of the formation and design the corresponding control laws, it 
is convenient that a reference frame is attached to each spacecraft. We shall always assume 
that these reference frames  are induced from a dextral of three orthonormal vectors. Let the 
formation have n spacecraft labeled as 1,2, .  . . , n. Let 9 denote the reference frame  attached 
to  the  i-th spacecraft; T' on the  other hand shall designate the inertial reference frame. For 
the  inertia  and  the mass of the i-th spacecraft we use I' and mi , respectively. The force 
and  torque  acting upon i are denoted by f '  and T~ ; for the m a s  normalized force we  used 

ki a -  .- L. The time derivative with  respect to 3' shall be denoted by $; Likewise, $ will m' ti 
be  used 
F' with 
position 

for the time derivative with  respect to 3' . r i  denotes the position of the origin of 
respect to Fj ; ti is the position of the origin of 3i with respect to T' . The desired 
of the origin  of 7' with respect to Fj shall be denoted by ry  , and by when j = 1. 
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The velocity of the origin of 9 with respect to Fj , the velocity  of the origin of 7' with respect 
to F1 , the desired  velocity of the origin of 3' with respect to Fj , and  the desired velocity  of : 
the origin of.31 with respect to F1 , shall be denoted by vu , vi , z# , and 4 , respectively. 
The vector [ri vi 1' shall be referred to as the  state of the  i-th spacecraft and will be denoted 
by zi . Similar notations  are used  for the  attitude and  the angular velocity of T' with respect 
to Fj : e and d are  the  attitude  and  the angular velocity of 9 with respect to Fj and 
qf and w: are  the desired angular velocity and  attitude of T' with respect to Fj . All other 
notations  are  standard: 32" denotes the real Euclidean space of dimension n; ll.lloo and 11.11 are 
used for the infinity norm and the 2-norm for vectors and matrices. The cross product  matrix 
induced by the vector z = (21 2 2  2311 is the matrix, 

2.2 Elementary Graph Theory 

A graph G = (V, E )  consists of a finite nonempty set V of vertices and a finite set of edges, 
E [3]. The cardinality of V is called the order of G. The graph G is  called undirected if 
every edge is an unordered pair of distinct vertices; if the edges correspond to  an ordered 
pair of distinct vertices then G is  called directed. We shall represent an edge in a directed 
graph  with  the end vertices labeled as v and w, as [u, w];  similarly { v ,  w }  is  used to denote the 
corresponding edge in an undirected graph. We say that the edge [v ,  w]  (or (21, w}) is incident 
on u and w .  A vertex which  is not incident to any edge  is  called isolated. Two vertices that  are 
connected by an edge are called adjacent vertices. The set of adjacent vertices of the vertex w 
is denoted by I'(w). 

The degree of a vertex is the number of its adjacent vertices. A path from u1 to vk is the 
list of vertices [ul, u2, .  . ., vk] such that [vi ,  vi+,) E E ,  for all i = 1,.  . . , k - 1. If for every two 
vertices in a graph  there is a path connecting them, then we call the  graph connected. The 
path is called simple if all of its vertices are distinct. A path is a cycle if A: > 1 and v1 = uk, 
and a simple cycle if in addition, vl ,  . . . , uk-l are distinct. A graph without a cycle is called 
acyclic. 

We say that G' = (V', E') is a subgraph of G = (V, E )  if V' V and E' C E .  A tree! is 
a connected graph that contains no  cycles. A spanning tree of a graph G is a  subgraph of G 
which  is a  tree and whose  vertices are a subset of V .  

A path P in a  directed graph is a sequence of vertices ( d , .  . . , u ), k 2 2, and a corre 
sponding sequence of k - 1 edges  such that  the i-th edge in the sequence is either [vi, vi+'] 
(in which case it is called a forward  edge of the  path), or [ui+',ui] (in which case it is called 
a backward edge of the  path). We denote by P+ and P-  the sets of forward and backward 
edges of P ;  the vertices u1 and uk are called the start vertex  and  end vertex of P ,  respectively. 

k 
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2.3 Elementary Dynamics: Inertial  and Moving Frames 

The dynamics of a point mass in an inertial  reference  frame is described by Newton's  second 
law as, 

- = -  d2r f 
dt2 m' 

where t, f ,  and rn denote, respectively, the (inertial) position,  the  force, and the mass of the 

If the coordinate €kame where poeitions and velocities are m d  is itself rotating or 
accderating, then the eqaations of motion are modified to rdect such a motion. Reid that 
the firat and the second derivative of a vector A in 7' and 7' are related by the dation, 

, _  point mass. 

d A  d A  . 
dt dt; 
-- - - +w' X A ,  

where wi is the angular  velocity  of T' with  respect to 7' . In particular, 

dw' dw' . . &' - = - +w' x w' = - 
dt  dt;  dt; ' 

stating  that the rate of change  of the angular  velocity is independent of the frame of reference 
where it is  measured. 

Differentiating both sides of (2.1) with respect to F' , we obtain, 

d 2 A   @ A  dwi 
" 

dt2 - - + - x A + 2 w i  dti2  dt; x G + w ' x ( W ' x A ) .  dt; 

In (2.3), the second, third, and  fourth.  terms on the right  hand  side of  the equality sign, are 
referred to aa the angular, Coriolis,  and  centripetal  acceleration,  respectively. 

One can therefore write the equation of motion in the moving reference  frame T' as, 

When  deriving control laws  for  each  spacecraft  in the  formation we shall  consider the 
situation where  the control is always  a  function of the error in the state of the spacecraft; when 
this error is in  fact the measured state by the  controller,  the LMI (??), or  the SDP (??)-(??) 
can  be conveniently  used to come up with a stabilizing  control law as outlined above. 
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2.4 Hybrid and Switching Systems 

A hybrid dynamicd  system is a system whose  time  evolution  is  governed by a combination of 
logical (or discrete), as well as continuous  variables [l], [5], [6], [8], [ll], (131. In particular, an 
autonomous  hybrid system can  be  represented  in the form of, 

= f ( z ( W ( t ) ) ,  
4 t )  = W t ) ,  W ) ) ,  

. .  where z(t) E P ,  and u(t) belongs to a a r e t e  eet N. Here for each u, f(.,u) : Rn + Js" b 
a globally Lipschit2 continuous function and u : 32" x AC + JV describes the dynamics of the 
finite stateu. The notation u(t-) indicates that the tinite states are piecewise continuo08 from 
the right. 

Similar to an autonomous hybrid system, a controlled  hybrid system can be represented  in 
the form, 

with the exception that u(t)  E Sm and the definition of f  and v are modified  accordingly.  It is 
not  hard to see that switching between  various  controllers  is in fact a special class of controlled 
hybrid systems; we present few  such switching  examples in the  context of formation  flying  later 
on  in the paper. 

De%nition 3.2 The formation configuration of a group of n spacecraft, 1 , .  . . , n, is the vector, 

~ ( t )  := [ r ' ( t> ,  v'(t>, . . ., t " ( t ) ,  u*(t)]' E 

'There are some  more  graph theoretic results which will be added to this section in the f ind version of the 

'A group of spacecraft  whose desired positions are expressed with respect to an inertial frame is thus an 
paper. 

special cbee of LF. 
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'Although the diffeomorphicity o f h  is not necessay for the purpose of defining the leader-follower  assignment, 
this  qualification shall be used for deriving control  laws in $5. 

The desired formation  pattern and configuration at  time t can naturally be  defined as. 
p d ( t )  := [ r i ( t ) ,  ..., r;(t)]', a d  &(t)  = [ d ( t ) , V ~ ( t ) ,  ...,rdD( t ) , ~ ~ ( t ) ] ' ;  

such a specification requires that every spacecraft in the formation has knowledge of its inertial 
position and velocity a t  all times.  However, what often is of interest in the context of formation 
flying is the relative spacecraft positions and velocities. We are  thus led to express p d ( t )  (or 
Cd( t ) )  in such a way that for a set of indices K C { 1,. . . , n}, r$(t) is specified as a function of 
9, h($(t)) ,  for all k E K and some I E { 1,. . . , n } / K ,  where, 

h : @ - , @ ,  

is a piecewise twice differentiable invertible map. Given that h is an &ne map, r$ can be 
expressed as, 

rdk(t) = H"r'(t) + P ( t ) ,  (3.7) 

for a matrix Hkl E Px3  and hu(t)  E 323. In the subsequent sections we shall generally consider 
the  situation where H is the identity matrix. 

Definition 3.3 i is the leader of j if is exprzssed as h(ri)  for some  piece-wise  twice  difer- 
entiable  invertible  map h : Sr + 

Note that  LF is simply an assignment and reflects how one decides to represent the desired 
formation pattern  and configuration. LF can  conveniently be represented in terms of a graph 
as we now proceed to show. 

Let GLF = (VLF, ELF) be a directed graph of order n, with VLF = { 1 , .  . . , n }  and [ i ,  j ]  E 
ELF if and only if i is the leader of j. We call GLF the LF graph of the formation. Closely 
related to the LF graph is the communication graph, Gc = (Vi,&). Gc is a directed graph 
with Vc = VLF; however [i,J] E Ec if and only if i can send real valued messages to j via 
a communication protocol. At times, it would be more  convenient to make Gc undirected, 
particularly  in the  situation where [ i , j ]  E Ec implies that b, i ]  E Ec. 

The LF assignment is closely related to  another concept  referred to as dependency. 

Definition 3.4 j is dependent  on i if d is u function of zi. 

Dependency is the result of a  situation where the control action of once spacecraft depends on 
the states  (inertial positions and  velocities) of another (set of) spacecraft in the formation. 

Proposition 3.1 If i is the leader of j, then j is dependent on i. 

\ i, 

c 
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Proof: 0 bserve that for some h : Sr - e, 
ui(ei(t)) = d(&) - zip)) 

= d(h(zi(t)),d(t)). 

a 
Definition 3.5 j is stmngly dependent on i if d is a function of zi and ui. 

.. Associated with the set of dependent and strongly dependent vertices of GLF, one can define 
the ~ ~ ~ n ~ g  - M P ~  GLFID and GLFISD- The P P ~  GLF, GLF~D, and GLFISD, 
the virtue of being constructed from the leader-follower assignments and the sssodated data 
dependencies, have varioun properties, few of which will be stated  and proved below. 

Proposition 3.2 GLFISD is a tee.  

Proof: It suffices to prove that GLFISD has no cycles.  Suppose that  it does: then  there  are 
indices i and j such that ui is a function of d, and vice versa. In this case, neither expression 
can be evaluated without knowing the other,  thus establishing a contradiction. a 
Motivated by the  property of GLF,SD, and in order to avoid  defining LF graphs which are 
inconsistent or  contain repeated information, we define a valid GLF to be a spanning  tree 
subgraph of GLF. 

Given that there  are no isolated  vertices in the GLF, and using an elementary  property of 
trees, we obtain  the following result. 

Proposition 3.3 If GLF contains  a valid GLF, then  the  number of LF assignments has to be 
greater  than or equal to n - 1. 

4 Control Objective4 
The control objective is to design a controller for each spacecraft in the formation such that 
the origin is the globally asymptotically stable equilibrium point  of, 

IlCd(t) - c(t>llm, 

in face of possible constraints on the control and the formation states,  disturbances and model 
uncertainties. Collision avoidance and saturation limits are two primary examples of such 
constraints. 

'A constraint of the form 
rnin 1- Ilcd( f )  - c( t ) l l :  d t ,  

for some p > 1 will be considered in an upcoming paper. 
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5 Simple Control Laws for LF 
In this section we go over  some  simple  control which are derived based on the  state feedback 
synthesis procedure  discussed in 92.4 . These control  laws  can be used for the control  of the 
formation pattern and configuration  under two different  measurement scenarios. First, we 
consider the situation where  inertial  measurements are available to  both  the  leader(s) and the 
follower(s); then we comment on the case where the foIlower(s)  meaauremenb are done  with 
respect to  its own moving reference  frame. 

5.1 Inertial Reference Frame Meaauremente 
Let i be the affine leader of j' (with E0 = I )  daring the time intend [to,fl]. The desired 
position of j is thus expressed as, 

i,(t) = T i ( t )  + hU(t), to 5 t 5 tf .  

The error expression  for j is  then  simply, 

d(t) = ra(t) - d ( t )  = ri(t) - d( t )  + hg(t). 

Assuming that hG is twice differentiable on [to,tr], the above  expression  can be differentiated 
twice  with  respect to the inertial  reference  frame to obtain, 

d2eqt) brhU(t) - = u'(t) - uj(t)  + - 
dt2 dt2 

By letting, 

&hU(t) d( t )  = ui + dtl + d(t) ,  

one obtains, 

The equation (5.10) can be  expressed as, 

(5.10) 

(5.11) 

where zl(t) = e ' ( t ) ,   q ( t )  = a f l ,  and  the  matrices Aj and Bj are defined as suggested by 
(5.11). 

dd t 

8 
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The control  design based on the state feedback synthesis for LF is thus  reduced to finding 
the term  for d using the approach  discussed in $2; in particular  we  proceed to solve, 

(5.12) 
(5.13) 

and let K j  = YQ-l. Hence, given that i is the affine leader of j (with Eji = I ) ,  the control 
law for j has the form, 

(5.14) 

Employing the control law (5.i4) by the follower spd j guarantem that the origin is the 
globdy asymptotically stable equilibrium of the error function z ( t ) ,  and  thereby, d(t)  + &t) 
a s t + m .  

5.2 Moving Reference F’rame Measurements 

We shall  now  briefly go over  the  situation  where the measurements  are  done  in the moving 
frame attached to  the follower  spacecraft.  Feedback  linearization is then used to reduce  this 
case to that considered  in  $5.1. 

Again let i be  the (affine)  leader  of j during  the  time  interval [ to , t rJ .  Contrary to $5.1 
however, we would Like to obtain an expression which  describes  the time evolution of d in 7’ 
(as opposed to F’ ). Proceeding  from (5.8) and  keeping  in  mind (2.3), one obtains, 

&ei(t) + &(t)  dd(  t )  
” x d ( t )  + 2 c j ( t )  x - +d(t)  x (d(t) x e ‘ @ ) )  

d t i  dtj d tj 
dzhu ( t )  

dt2 = (u’(t)  - d ( t ) )  + (5.15) 

The last term on the right hand side of (5.15) can of course be represented in Fj as, 
dlhu(t) &(t)  +- x h q t )  + flwi(t) x !!?el + w ’ ( t )  x (w’(2) x hi+)). (5.16) dtj’ dti d tj 

The rate of change of the angular velocity d with  respect to F” (or F’ ) is  related to the 
applied  torque on the spacecraft  via the Euler’s  equation, 

d .  
dt  dt - ( W W  = I” + d(t) x (fid(t)) = d ( t ) ,  d 4 t )  

dcJi(t)  
” 

dt - ( I i ) - y T j ( t )  - J ( t )  x ( I i w i ( t ) ) ) .  

9 
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, and z3(t) = d(t). The  dynamics of j can  thus  be  represented 

(5.20) 

i 3 ( t )  = (P)-'(d(t) - *(t)  x liZs(i)). (5.21) .. 
The ditterential equations (5.19)-(5.21) describe a nodbear dynamical system whose state 
represent8 the evolution of the position error, position rate error, and angular velocity of the 
follower spaeecraft, in the foltotper'8 mooing d i n a t e  jhme. In principle, one would like to 
choose the control action such that  the origin is the globally asymptotically  equilibrium  point 
of [zl, 221. For this purpose we consider  two  distinct situations. 

1. j has  constant  angular  velocity: Consider the case  where, 

d( t )  = z3(t) X r'z3(t), (5.22) 

i.e., the angular  velocity of j during  the LF remains  constant. The dynamical  equations 
(5.19)-(5.20) can then be written as, 

h ( t )  = z 2 ( t ) ,  (5.23) 
&(t)  = W l Z l ( t )  + W 2 z 2 ( t )  + d ( t )  - zc'(t), (5.24) 

where, 

Consider again the change of @able of the form, 

brhi( t )  
4 t )  = u'(t) + - dt2 + 3(t), 

then, 

(5.25) 

Define the matrices Aj and Bj as suggested  above. We can then  proceed as in $5.1 and 
solve the LMI, 

AjQ + Q(Aj)'  + BjY + Y'(Bj)' < 0, (5.26) 
Q > 07 (5.27) 

10 

. .. 

c 



and  let, 

note  that only the definition of the  matrix Aj has been  modified from 55.1 to reflect the 
fact  that  the  error vector  is now measured in the moving coordinate frame  attached to 
the follower. 

.. 2. j has non-comtant velocity: If the angular velocity of j does not remain constant 
during the LF, t h a z  we fdback linearization to linearize the dynamics in such 
a way that the LMI apppach above can still  be adopted. For this purpose it s d c e s  to 
let, 

. .  

d = -2~3(t) X 4 t )  - ( P ) - ' ( d ( t )  - z@) X I I z ~ ( ~ ) )  - t3(t)(Zs(t) X zl ( t ) ) ,  (5.28) 

and  let, 

as before the expression for d(t)  is found be solving the LMI (5.12)-(5.13). 

In both scenarios considered above, the control law  for the leader spacecraft i can also be based 
on the  state feedback synthesis. For this purpose it suffices to let, 

d2ra( t )  u'(t) = YQ"z(t) + - 
dt2 ' 

where the matrices Y and Q are found from the LMI (5.12)-(5.13) by letting, 

however z is now simply rfl(t) - r i ( t ) .  

6 Changing the LF Graph: Leadership Re-Assignment 

The designation of the leader, aside  from its associated hardware and  software considerations 
and the required communication protocol, is rather arbitrary. It is thus of interest to consider 
a situation where the leader assignments are time varying. In this direction, we would Like to 
study how the formation control performance is effected by changing the LF graph as, 

+ ~2~ - G ; ~  - ... 
11 



Consider for example a two spacecraft formation; let GtF and G 2  be  defined  by, 

G ~ F  = ( { i , j } ) , [ i , j ] ) ,  and GL:s1 = ({i,j},Li,i]). 

G i F  corresponds to  the situation where i is the leader of j and therefore (assuming an affine 
leadership), 

.* In this caoe the control law of $5.2 (when inertial rneammmenb are available) can be imple- 
mented aa, 

where ~ ' ( t )  is the  state error observed by i at time t. Since hU(t) = - @ ( t ) ,  for G;$' the 
control law can be expressed as, 

u'(t) = Kz'(t)  + 3 ( t )  + - - dt2 
d 2 f  ( t )  d(t)  = K t i ( t )  t *. 

Thus, as GLF changes, the formation control mechanism can  be  modified according to  the 
logic-based switching mechanism  shown in Figure 1. 

7 LF Capturing 

We consider a situation where a free spacecraft is captured by an LF; trandated in terms of 
GLF, this corresponds to the case  where an isolated vertex is connected to GLF (Figure 2). 
Building on the control laws developed  in 95, the corresponding block diagram  representing the 
switching control system can be drawn as shown  in Figure 3. Note that we have considered 
the  situation where the isolated spacecraft is not assigned as a leader; if this is in fact the 
case, then  its control law will not  be  changed  from  when the spacecraft was  free.  However,  in 
this latter  situation,  the control law for the new  followers  of the new leader spacecraft changes 
according to  the procedure presented in $6. 

12 
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Figure 1: Switching for Leader  Reassignment 

'b New LF participants 

Figure 2: Switching for  Leader  Reassignment 
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Figure 3: LF capturing 

8 Control Saturations 

We now examine the scenario where the j - th  spacecraft, j, following i in an LF, is also avoiding 
control saturation by switching between  two or more controllers. In order to simplify the 
presentation, we shall assume in the rest of this section that, 

d2hji(t) = 0, to I t I t f .  
dt2 . 

Recall that following the discussion of $5 (when inertial measurements are available), the state 
error dynamics of j can be represented by, 

E ( t )  = ( A  + B K ) z ( t ) ,  

where, 

A = [ O I  o ] ,  B = [ -",I, and K =YQ"; 

the  matrices Y and 8 are found from solving the LMI, 

AQ + QA'+  BY + Y'B' < 0, Q > 0. 

14 



Let m denote the 2-norm of the maximum allowable  mass  normalized  force  on each spacecraft 
in the  formation; that  is, we  require that, 

Il.i(t)ll 5 m, to I 1 I tf.  (8.29) 

Note that although (8.29) imposes a constraint on the control  vector  expressed in  the iner- 
tial  frame, it directly translates into a requirement  expressed in the spacecraft body frame 
via an orthogonal  transformation (recall the invariance  of  the  2-norm  under an orthogonal 
trdommtion).  Now &e, 

d(t) = YQ-'z(t)+d(t) ,  

we  require that, 

Ilui(t) t YB"z(t)ll I 7% to I t I t i .  (8.30) 

Note that although j has no prior  knowledge about the values of ui , it has to choose Q and 
Y such that (8.30) is satisfied. To  cope  with this lack of knowledge on the values  of ui(t), 
we proceed to present a controller  switching  mechanism  which  satisfies the control constraint 
(8.30), in  face of  the lack of a priori  knowledge of the values  of ui(t) by the follower  spacecraft. 
The only assumption which  is  required  for  the  proposed  approach to work  is that, 

Ilu'(t)ll < m, 20 I t L tf .  

(8.31) 
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constant, then z ( t )  E &to for  all t E [ to , t / ] .  In this situation, in  order to guarantee that the 
saturation constraint is not  violated, we can  augment the LMIs (8.31) and (8.32) with an LMI, 

since [4], 

(8.33) 

5 ~,(Q;1'2Y~Yb8, * 
4 2 )  

The inequality (8.33)  is simply an "LMI way" of guaranteeing that, 

Now, the problem is that in general,  one  cannot  guarantee  that .(to + at) E &to, nor does the 
above discussion addresses  the situation where mi(t) does  not remain constant. We are  thus 
led to incorporate  logic-based  switching in conjunction  with LMIs (8.31)-(8.33) to address both 
of these scenarios. Let, 

solve the SDP, 

a < 0. 

(8.34) 

(8.35) 
(8.36) 

(8.37) 

(8.38) 

(8.39) 

We shall assume, without loss of generality, that the  above SDP is feasible. Let  us  now  proceed 
from time to and  consider  the  various  scenarios which can  occur  at time to + 6t :  
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1. z(to + s t )  E Et, and mi(t) has remained constant: In this  case  it is guaranteed that. 

thus the control  constraint is not  violated if the same  control  law used at time to is 
applied at time to + 6t. 

(a) We codder the trajectory  at^ staying in the ellipdid &; however  we can modify 
the controller g a b  &, by changing the matrix Y,: 

(8.42) 

The  state feedback  gain can now  be set as, 

Proposition 0.1 The SDP (8.40)-(8.42) is feasible. 

(b) Given that m'(b + st )  >, ai, we might  be  able to find a smaller  ellipsoid  where the 
error .(to + at)  belongs, by solving the following SDP: 

. i . 

(8.47) 

(8.48) 
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Lemma 8.2 Given that z ( t )  E &to for all t E [ to , t l ] ,  both of the above controller 
switching  mechanism m a l t  in a globally osymptoticallg  stable  hybrid dynamical s p  
tem which W guaranteed to  satisfy the contml  constmint. 

P m f i  Provided that m*(to + at) 2 si and  that z ( t )  E &to, it is guaranteed that 
the optimal value  of p in (8.40)-(8.42) is negative. Now let, 

and Ph = QC1. We observe that, 

for all t .  In order  words, V(z) = z'Pz is a common  quadratic  Lyapunov  function 
for, 

implying that the origin is the globally  asymptotically stable equilibrium  point  for 
any switching sequence  described  above. 0 

( c )  z(t0 + 6 t )  4 Eta, whether or not mi has remained  constant : This scenario  arises when 
the error at time to + 6t leaves the ellipsoid  generated to bound it at time to .  For 
this case,  we  proceed to solve  a new SDP, 

Q < 0 ,  

(8.55) 

(8.56) 

in  conjunction with another LMI which  shall  make  the analysis of the resulting 
switching  mechanism  more  manageable, 

(8.57) 



Figure 4: Ellipsoids for Control Switching 

such that for all t E [to,  t r ]  and some t k ,  

z ( t )  E Et, := ( 2  : .'Qt*l < 1); (8.59) 

let k be the least index  for  which (8.59) holds. By  the nested-ness  property (8.58) 
such an index is unique. 

Proposition 8.3 The  control  stm'tching  mechanism p m p e d  above nzsults in a  hybrid 
dynamical system when the mgin is its globally  asymptotically stable equilibrium  point. 

P m f i  The trajectories of the error can either  remain in the ellipsoid which waa generated 
last, or it can be put in the  larger  ellipsoid which contains the previous  ellipsoid.  Since 
the ellipsoids that are  generated  are  nested, we  are  guaranteed that the trajectory of 
the error  eventually  visits and remains  in &k for  some k ,  at  which point, it  will  converge 
exponentially to  the origin  (Figures 4 and 5). 0 

9 Simulation  Results 

In this  section we provide  simulation  results for few  scenarios  which demonstrate the  types  of 
switching  described in the  paper. 

19 



i 

Figure 5: S checks whether t E &ttL and switches the  controller  accordingly 
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Figure 6: Leadership reassignment 
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Figure 7: LF  capturing 

Figure 6 depicts the scenario  where the leadership  assignment is changed  between the 
spacecraft in a  two-spacecraft  formation; the follower  (either 1 or 2) both before  and after the 
LF reassignment, is  required to track a circular  path  with  respect to leader. 

Figure 7 demonstrates the LF capturing  scenario, where a free  spacecraft is captured  by 
the LF and is thus required to have a certain  deviation  from  the  leader  after the capturing 
time. Finally,  Figures 8-9 show an example  where  the  follower’s control law is switched in 
order to avoid control saturation as the result of a relatively high control input used  by the 
leader. 

10 Conclusion 
We presented  several  new  results on the  formation  flying  control architecture based on the 
leader  following strategy using ideas from  graph  theory,  linear  matrix inequalities, and  logic- 
based switching. In this direction, the stability and the  convergence  properties of the resulting 
hybrid systems were given particular attention. 
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Figure 8: Control  saturation  prevention 
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Figure 9: follower switches  controller to avoid  saturation at 1 = 5 sec' 

22 



References 

[l] P . Anfsaklis, W. Kohn, A. Nerode,  and S. Sastry,  editors. Hybrid S y s t e m  4. Lecture 
Notes in Computer  Science.  Springer-Verlag,  1997. 

[2] R. W. Beard and F. Y. Hadaegh.  Finite  thrust  control  for  satellite  formation flying with 
state constraints. in American  Control  Conference, 1998. 

(31 B. BollobG. Modem Gmph  Theory. Springer, 1998. 

[4] S. P. Boyd, L. EL Ghaoui, E. Feron, and V. Baahrishnan. Linear MotFir: I W 2 h  in 
System and Contml Thwq. SIAM, Philadelphia,  1994. 

[5]  M. S. Branicky.  Multiple  Lyapunov  functions  and  other  analysis tools for switched and 
hybrid systems. IEEE Tmnsactions on Automatic  Contml, 43(4):475-482,1998. 

[6] R. W. Brodrett. Hybrid  models  for  motion  control  systems. In H.  L. Trentelman  and 
J. C. Willems, editors, Essays  in Control, pages 29-53. Birkhauser,  1993. 

[7] A. B. Decou.  Multiple  spacecraft  optical  intederometry-  Preliminary  feasibility assess- 
ment. Technical  report,  Jet  Propulsion  Laboratory,  1991. 

(81 J.  Malmborg,  B  Bernhardson,  and  K. J. Astrom.  A  stabilizing  switching  scheme  for 
mutli-controller systems. In Pmeedings of the lFAC World Congress, San Francisco, CA, 
1996. 

[9]  V.  Manikonda,  P. 0. Arambel,  M. Gopinathan, R. K. Mehra,  and F. Y. Hadaegh. A model 
predictive  control-based  approach  for  spacecraft  formation-keeping  and attitude control. 
Technical  report,  Scientific Systems Company,  Inc.,  1998. 

[lo] M. Mesbahi, M. G .  Safonov,  and G .  P. Papawdopodos.  Bilindty and complementarity 
in robust  control. In Recent Advances on LMI Appnmch in  Control. SIAM, Philadelphia, 
1998. 

[ll] A. S. Morse.  Control using  logic  based  switching. In A. Isidori, editor, T e n d s  in Control: 
A European Perspective. Springer-Verlag,  1995. 

[12] Y. Nesterov  and A. Nemirovskii. Interior-Point Polynomial Algorithms in Conuez Pro- 
gramming. SIAM, Philadelphia,  1994. 

[13] T. Pavlidis. Stability of  systems  described by  differential equations  containing  impulses. 
IEEE Tmnsactions on Automatic  Control, 12:43-45, 1967. 

23 



[14] R. Stachnik, K. Ashfin, and K. Hamilton.  Space-Station-SAMSI: A spacecraft array 
for  Michelson npatid interferometry. Bulletin of the American  Astronomical Society, 
16(3):818-827,1984. 

[15] P. K. C. W a g  and F. Y. Hadaegh. Coordination  and  control of multiple  microspacraft 
moving in formation. Journal of the A s t m a u t i d  Sciences,  44(3):31!5-355,1996. 

(161 P. K, C. Wang, F. Y. Badaegh, and E[. Lau. Syncbmizd formation rotation and attitude 
contrd of multiple bflyiq rp.cscnft. Jotandl of Guidance, Gmtd and m m k ,  
21(6), 1998. 

*. . 
. .  

, .  ". 
- .  a; : ~ . 

24 

I 

A- ". 
I , ., 


